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INTRODUCTION

Immunology is the field of study concerned with the recognition and disposal of 

foreign or “non-self” material that enters the body. This material is usually in the 

form of life-threatening infectious microorganisms1 or cancer2 but sometimes, 

unfortunately, in the shape of life-saving graft transplantation.3 The body can also 

be tricked into mobilizing the immune response against itself, to create autoimmune 

diseases. The NIH estimates that approximately 23.5 million Americans suffer from 

autoimmune disease and that the prevalence is rising.4 Recent progress in the 

treatment of autoimmune diseases amply illustrates the impact that advancements in 

immunology are having on human health and disease. 

Next-generation sequencing technology is proving to be a powerful tool to map 

the vast repertoire of immune cells that are capable of recognizing the seemingly 

boundless array of targets.5 Repertoire sequencing has enabled researchers 

to identify unique receptor variants found in individuals with susceptibility to 

hematological malignancies, autoimmune diseases, and allergen response.6 This 

approach is rapidly gaining the attention of translational scientists who seek to 

improve patient care. Hematologists have led the repertoire sequencing effort and 

have demonstrated the reliability, cost-effectiveness, and medical value of repertoire 

sequencing in hematopoietic stem cell transplantation.7

The major histocompatibility complex (MHC) is a locus that encodes a highly 

variable repertoire of cell surface proteins that present foreign antigens to T-cells. 

The encoded repertory of cell-surface molecules enables immune recognition 

and clearance of foreign agents. Genes within this locus are routinely assessed in 

matching patients and donors for solid organ transplantation8 and hematopoietic 

stem cell transplantation.9 By comparing variants of these genes between healthy 

and affected individuals, researchers are now able to elucidate the root causes of 

disease susceptibility (i.e. hematological, autoimmune, allergies, hypersensitivities, 

chronic inflammation, infectious diseases).10 

The development of Illumina’s next generation sequencing provides the quality, 

throughput and read lengths required by the research community to map the human 

immune response at high resolution. The emergence of new approaches such as 

phase-defined sequencing and single-cell sequencing can be expected to accelerate 

this knowledge base. 

1. Neller M. A., Burrows J. M., Rist M. J., Miles 
J. J. and Burrows S. R. (2013) High frequency 
of herpesvirus-specific clonotypes in the 
human T cell repertoire can remain stable over 
decades with minimal turnover. J Virol 87: 
697-700

2. Haen S. P. and Rammensee H. G. (2013) The 
repertoire of human tumor-associated epi-
topes--identification and selection of antigens 
and their application in clinical trials. Curr Opin 
Immunol 25: 277-283

3. Meyer E. H., Hsu A. R., Liliental J., Lohr A., 
Florek M., et al. (2013) A distinct evolution 
of the T-cell repertoire categorizes treatment 
refractory gastrointestinal acute graft-versus-
host disease. Blood 121: 4955-4962

4. The Cost Burden of Autoimmune Disease: The 
Latest Front in the War on Healthcare Spend-
ing. 1–14 (www.diabetesed.net/page/_files/
autoimmune-diseases.pdf)

5. Woodsworth D. J., Castellarin M. and Holt 
R. A. (2013) Sequence analysis of T-cell 
repertoires in health and disease. Genome 
Med 5: 98

6. Robins H. (2013) Immunosequencing: applica-
tions of immune repertoire deep sequencing. 
Curr Opin Immunol 25: 646-652

7. Warren E. H., Matsen F. A. t. and Chou J. 
(2013) High-throughput sequencing of B- and 
T-lymphocyte antigen receptors in hematology. 
Blood 122: 19-22

8. Eapen M., Rubinstein P., Zhang M. J., Stevens 
C., Kurtzberg J., et al. (2007) Outcomes of 
transplantation of unrelated donor umbilical 
cord blood and bone marrow in children with 
acute leukaemia: a comparison study. Lancet 
369: 1947-1954

9. Marks C. (1983) Immunobiological determi-
nants in organ transplantation. Ann R Coll Surg 
Engl 65: 139-144

10. De Santis D., Dinauer D., Duke J., Erlich H. 
A., Holcomb C. L., et al. (2013) 16(th) IHIW : 
review of HLA typing by NGS. Int J Immunoge-
net 40: 72-76
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Next-generation sequencing has enabled researchers to make a significant impact in these applications 
(shown in blue). The list on the far right represents a subset of the human health and disease issues that can 
be addressed with these applications.

Reviews
Georgiou G., Ippolito G. C., Beausang J., Busse C. E., Wardemann H., et al. (2014) The promise and 
challenge of high-throughput sequencing of the antibody repertoire. Nat Biotechnol 32: 158-168

Ansel K. M. (2013) RNA regulation of the immune system. Immunol Rev 253: 5-11

Bronevetsky Y. and Ansel K. M. (2013) Regulation of miRNA biogenesis and turnover in the immune system. 
Immunol Rev 253: 304-316

De Santis D., Dinauer D., Duke J., Erlich H. A., Holcomb C. L., et al. (2013) 16(th) IHIW : review of HLA typing 
by NGS. Int J Immunogenet 40: 72-76

Finn J. A. and Crowe J. E., Jr. (2013) Impact of new sequencing technologies on studies of the human B cell 
repertoire. Curr Opin Immunol 25: 613-618

Robins H. (2013) Immunosequencing: applications of immune repertoire deep sequencing. Curr Opin 
Immunol 25: 646-652

Shay T. and Kang J. (2013) Immunological Genome Project and systems immunology. Trends Immunol 34: 
602-609

Warren E. H., Matsen F. A. t. and Chou J. (2013) High-throughput sequencing of B- and T-lymphocyte antigen 
receptors in hematology. Blood 122: 19-22

Woodsworth D. J., Castellarin M. and Holt R. A. (2013) Sequence analysis of T-cell repertoires in health and 
disease. Genome Med 5: 98
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ADAPTIVE IMMUNITY

Repertoire Sequencing of Lymphocyte Receptors

The B and T-cell lymphocytes constitute the adaptive branch of the immune system, 

which is capable of identifying a vast range of antigens. This diverse repertoire of 

recognition elements is created through unique arrangements of immunoglobulin 

molecules on B-cell and T-cell receptors. Successful recognition of antigens triggers 

both an effector immune response as well as a memory response. An effector 

response includes CD8+ T-cells that eliminate cells with foreign antigens and CD4+ 

T-cells that differentiate into several different kinds of effector cells, including those 

that can further activate macrophages, cytotoxic T-cells, and B cells.11,12 The B-cell 

effector response involves plasma cells that secrete antibodies capable of neutralizing 

or eliminating a foreign agent.13 The memory response occurs when B and T-cells 

are activated by exposure to a foreign antigen.14 Activation of these cells results in 

proliferation and preservation of the specific antigen receptor, such that secondary 

exposure to the foreign agent results in a robust immune response.15

In comparison to somatic cells, B and T-cell lymphocytes are unique in that their 

development and maturation are determined by DNA sequences that are not 

encoded in the germline. Instead, during the maturation process, these cells undergo 

rearrangement of the variable (V), diversity (D) and joining (J) gene segments in order 

to create a unique sequence that can encode an exclusive receptor structure in the 

heavy immunoglobulin chain of B cells, the β chain of αβ T-cell receptors, and the  

δ chain of γδ T-cell receptors. 

T-cell receptor-antigen-peptide-MHC interaction and T-cell receptor (TCR) gene recombination. (a) The 
antigen-presenting cell presents the peptide antigen bound to the major histocompatibility complex (MHC). 
The TCR (orange) binds to both the antigen and MHC. If the binding avidity is sufficiently high the T-cell is 
activated. The complementarity determining region 3 (CDR3) domain is shown in purple.16

11. Litman G. W., Rast J. P. and Fugmann S. 
D. (2010) The origins of vertebrate adaptive 
immunity. Nat Rev Immunol 10: 543-553

12. Zhou L., Chong M. M. and Littman D. R. 
(2009) Plasticity of CD4+ T cell lineage differ-
entiation. Immunity 30: 646-655

13. Lund F. E. and Randall T. D. (2010) Effector 
and regulatory B cells: modulators of CD4+ T 
cell immunity. Nat Rev Immunol 10: 236-247

14. Tokoyoda K., Hauser A. E., Nakayama T. and 
Radbruch A. (2010) Organization of immuno-
logical memory by bone marrow stroma. Nat 
Rev Immunol 10: 193-200

15. Ahmed R. and Gray D. (1996) Immunological 
memory and protective immunity: understand-
ing their relation. Science 272: 54-60

16. Woodsworth D. J., Castellarin M. and Holt 
R. A. (2013) Sequence analysis of T-cell 
repertoires in health and disease. Genome 
Med 5: 98
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Simplified representation of TCR-β VDJ gene recombination resulting in TCR diversity. The TCR-β locus 
is located on chromosome 7 and is approximately 620 kb in length. Initially one of the two D regions is joined 
with one of 13 J regions (both randomly selected), followed by joining of the DJ region to one of more than 
50 V regions (also randomly selected), yielding a final VDJ region that is approximately 500 bps in length. 
The mechanism by which gene segments are joined also introduces bp variability, which together with the 
combinatorial selection of these segments results in TCR diversity. A completely analogous process occurs 
for the TCR α chain, without the D gene segment included.

17. Georgiou G., Ippolito G. C., Beausang J., 
Busse C. E., Wardemann H., et al. (2014) The 
promise and challenge of high-throughput 
sequencing of the antibody repertoire. Nat 
Biotechnol 32: 158-168

CDR3β

Vβ1 Vβ54 Dβ1 Cβ1 Cβ2Dβ2Jβ1-6

Vβ54 Dβ1 Jβ7 Cβ1

Jβ7-13

~620 kb

~500 bp

VDJ rearrangement in a B–cell generates the variable heavy chain of the 

immunoglobulin molecule. This immunoglobulin molecule is expressed on 

the surface of B cells and can also be freely secreted as an antibody.

Chromosome 14

VDJ assembly

Class switch

B-Cell

14q32

VH DH JH CH

VL

JL

CL

VH

JHDH
CH

CH2
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The primary antibody heavy chain repertoire is created predominantly by the somatic recombination of 
variable (V), diversity (D) and joining (J) gene segments. Nontemplated nucleotides (indicated in red) can 
also be added. The antigen-binding site of a heavy chain is formed by the juxtaposition of the hypervariable 
complementarity-determining regions (CDR-H1, H2 and H3) and the framework 3 region (FR3). After 
productive IgH rearrangement, recombination of the light chain (IgL) ensues, and the heterodimeric pairing of 
H and L chains forms the complete antibody of the IgM isotype that is expressed on the surface of a newly 
formed immature B cell.17
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In addition to the aforementioned combinatorial diversity, made possible by the 

rearrangement of V, D, and J gene segments, splice variants contribute to this 

diversity via template-independent insertion and deletion of nucleotides at the V-D, 

D-J, and V-J splice junctions.18 The size of the repertoire is further increased in B-cell 

receptors by somatic hypermutations (SHM) of B-cell receptor genes during affinity 

maturation after initial antigen encounter. 

This combinatorial mechanism has the potential to generate more than 1018 

unique T-cell receptors in humans and a much more diverse B-cell repertoire.19,20 

The entire human VDJ region is has been estimated to range from 

300 to 400 nucleotides in length, which makes read length a critical parameter in 

high-throughput sequencing.21,22,26

Complementarity determining regions (CDRs) are regions within antibodies or T cell 

receptors that complement an antigen’s shape. Of the three complementarity-

determining regions, CDR3 is the most variable locus and the most critical 

determinant of antigenic specificity.23-26 The CDR3 region in the majority of rearranged 

functional TCR β and immunoglobulin heavy chains has a length ranging from 6621,27 

to 9022 bps. Therefore, a sequencing depth of 1 x 109 successfully characterizes the 

entire B and T-cell repertoire.28 

Repertoire sequencing has applications in characterizing reconstitution of B and 

T-cell repertoires after hematopoietic stem cell transplantation, tracking lymphocytes 

in hematological malignancies, assessing vaccine efficacy, identifying lymphocyte 

repertoire variants associated with autoimmune diseases, and in identifying 

lymphocyte receptor variants in cancers such as colorectal cancer.29, 30

18. Martinez N. M. and Lynch K. W. (2013) Control 
of alternative splicing in immune responses: 
many regulators, many predictions, much still 
to learn. Immunol Rev 253: 216-236

19. Vahedi G., Takahashi H., Nakayamada S., Sun 
H. W., Sartorelli V., et al. (2012) STATs Shape 
the Active Enhancer Landscape of T Cell 
Populations. Cell 151: 981-993

20. Venturi V., Price D. A., Douek D. C. and 
Davenport M. P. (2008) The molecular basis 
for public T-cell responses? Nat Rev Immunol 
8: 231-238

21. Rocha P. P., Micsinai M., Kim J. R., Hewitt S. 
L., Souza P. P., et al. (2012) Close proximity 
to Igh is a contributing factor to AID-mediated 
translocations. Mol Cell 47: 873-885

22. Benichou J., Ben-Hamo R., Louzoun Y. and 
Efroni S. (2012) Rep-Seq: uncovering the im-
munological repertoire through next-generation 
sequencing. Immunology 135: 183-191

23. Warren R. L., Freeman J. D., Zeng T., Choe 
G., Munro S., et al. (2011) Exhaustive T-cell 
repertoire sequencing of human peripheral 
blood samples reveals signatures of antigen 
selection and a directly measured repertoire 
size of at least 1 million clonotypes. Genome 
Res 21: 790-797

24. Robins H. S., Campregher P. V., Srivastava 
S. K., Wacher A., Turtle C. J., et al. (2009) 
Comprehensive assessment of T-cell receptor 
beta-chain diversity in alphabeta T cells. Blood 
114: 4099-4107

25. Robins H. S., Srivastava S. K., Campregher 
P. V., Turtle C. J., Andriesen J., et al. (2010) 
Overlap and effective size of the human CD8+ 
T cell receptor repertoire. Sci Transl Med 2: 
47ra64

26. Wang C., Sanders C. M., Yang Q., Schroeder 
H. W., Jr., Wang E., et al. (2010) High through-
put sequencing reveals a complex pattern of 
dynamic interrelationships among human T 
cell subsets. Proc Natl Acad Sci U S A 107: 
1518-1523

27. Larimore K., McCormick M. W., Robins H. S. 
and Greenberg P. D. (2012) Shaping of human 
germline IgH repertoires revealed by deep 
sequencing. J Immunol 189: 3221-3230

28. Warren E. H., Matsen F. A. t. and Chou J. 
(2013) High-throughput sequencing of B- and 
T-lymphocyte antigen receptors in hematology. 
Blood 122: 19-22

29. Benichou J., Ben-Hamo R., Louzoun Y. and 
Efroni S. (2012) Rep-Seq: uncovering the im-
munological repertoire through next-generation 
sequencing. Immunology 135: 183-191

30. Sherwood A. M., Emerson R. O., Scherer 
D., Habermann N., Buck K., et al. (2013) 
Tumor-infiltrating lymphocytes in colorectal 
tumors display a diversity of T cell receptor se-
quences that differ from the T cells in adjacent 
mucosal tissue. Cancer Immunol Immunother 
62: 1453-1461
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Reviews
Georgiou G., Ippolito G. C., Beausang J., Busse C. E., Wardemann H., et al. (2014) The promise and 
challenge of high-throughput sequencing of the antibody repertoire.  
Nat Biotechnol 32: 158-168

Finn J. A. and Crowe J. E., Jr. (2013) Impact of new sequencing technologies on studies of the human B cell 
repertoire. Curr Opin Immunol 25: 613-618

Robins H. (2013) Immunosequencing: applications of immune repertoire deep sequencing. Curr Opin 
Immunol 25: 646-652

Warren E. H., Matsen F. A. t. and Chou J. (2013) High-throughput sequencing of B- and T-lymphocyte antigen 
receptors in hematology. Blood 122: 19-22

Woodsworth D. J., Castellarin M. and Holt R. A. (2013) Sequence analysis of T-cell repertoires in health and 
disease. Genome Med 5: 98

Benichou J., Ben-Hamo R., Louzoun Y. and Efroni S. (2012) Rep-Seq: uncovering the immunological 
repertoire through next-generation sequencing. Immunology 135: 183-191

References
Emerson R., Sherwood A., Desmarais C., Malhotra S., Phippard D., et al. (2013) Estimating the ratio of 
CD4+ to CD8+ T cells using high-throughput sequence data. J Immunol Methods 391: 14-21
The authors identify sequence features in the variable CDR3 region of the rearranged T cell receptor gene 
that distinguish CD4+ from CD8+ T cells. These features include variable gene usage and CDR3 region 
length. They estimate that as few as 1000 T cell receptor sequences are needed to accurately estimate the 
proportion of CD4+ and CD8+ T cells.

Illumina Technology: HiSeq 2000

Putintseva E. V., Britanova O. V., Staroverov D. B., Merzlyak E. M., Turchaninova M. A., et al. (2013) 
Mother and child T cell receptor repertoires: deep profiling study. Front Immunol 4: 463
The authors performed comparative analysis of these TCR repertoires of 3 mothers and 6 children. Thymic 
selection shapes the initial output of the TCR recombination machinery in both related and unrelated pairs, 
with minor effect from inherited differences. TCR profiling using characteristic TCR beta CDR3 variants as 
clonal identifiers also showed that mature T cells, transferred across the placenta during pregnancy, can 
expand and persist as functional microchimeric clones in their new host.

Illumina Technology: HiSeq 2000

Medvedovic J., Ebert A., Tagoh H., Tamir I. M., Schwickert T. A., et al. (2013) Flexible long-range loops in the VH 
gene region of the Igh locus facilitate the generation of a diverse antibody repertoire. Immunity 39: 229-244

Meier J., Roberts C., Avent K., Hazlett A., Berrie J., et al. (2013) Fractal organization of the human T cell 
repertoire in health and after stem cell transplantation. Biol Blood Marrow Transplant 19: 366-377

Genolet R., Stevenson B. J., Farinelli L., Osteras M. and Luescher I. F. (2012) Highly diverse TCRalpha chain 
repertoire of pre-immune CD8(+) T cells reveals new insights in gene recombination. EMBO J 31: 1666-1678

Larimore K., McCormick M. W., Robins H. S. and Greenberg P. D. (2012) Shaping of human germline IgH 
repertoires revealed by deep sequencing. J Immunol 189: 3221-3230

Wu D., Sherwood A., Fromm J. R., Winter S. S., Dunsmore K. P., et al. (2012) High-throughput sequencing 
detects minimal residual disease in acute T lymphoblastic leukemia. Sci Transl Med 4: 134ra163v
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Notes on Experimental Design
The primary challenges in CDR3 sequencing are the accumulation of PCR errors, 

sequencing errors, and ratio bias. These factors can result in the generation of false 

TCR diversity (artificial diversity) with the resultant inability to interpret sequence 

information accurately. For example, generating more sequencing reads may result in 

the expansion of erroneous sequence variants with one, two, or more mismatches. 

These amplified errors may be interpreted as evidence for sequence diversity.31,32

To address artificial diversity, previous studies suggest withdrawal of the low-

abundance CDR3 variants that differ from the high-abundance variants by a single 

nucleotide mismatch or blind elimination of low-abundance sequence variants that 

comprise a total of 4% of all sequencing reads. It has been shown that this approach 

can result in up to 50% loss of sequencing reads and an even greater loss on non-

Illumina platforms.33

To eliminate PCR and sequencing errors the following recommendations have been 

made in the literature.34

• From each sequencing read the CDR3 is extracted by aligning each sequence 

to the set of genomic VDJ segments from the IMGT/GENE-DB database. Low-

quality nucleotides for VDJ segments are treated as allowable mismatches. 

• Mapping low-quality reads. High-quality sequences at each nucleotide position 

within CDR3 form “core clonotypes.” These are merged with low-quality 

sequencing reads that have ≤3 low-quality nucleotides. 

• Correcting PCR errors. Given that TCRs do not undergo somatic hypermutation, 

nucleotide mismatches with the VD, or J segments of CDR3 can only arise from 

PCR and sequencing errors. Low-abundant core clonotypes are merged with the 

more abundant (at least 5-fold more abundant) core clonotypes that differ by no 

more than 3 nucleotides. 

mRNA is the preferable starting material for TCR profiling.35

• T-cell contains multiple copies of RNA molecules that encode beta and alpha 

chains. These copies widen the bottleneck between the sampled T cells and the 

final TCR amplicon.

• Given that genomic DNA requires that the entire sample be amplified to compute 

TCR repertoire, this becomes technically challenging when studying sizable 

populations of T-cells, which would require unreasonably large aliquot volumes.

31. Warren R. L., Freeman J. D., Zeng T., Choe 
G., Munro S., et al. (2011) Exhaustive T-cell 
repertoire sequencing of human peripheral 
blood samples reveals signatures of antigen 
selection and a directly measured repertoire 
size of at least 1 million clonotypes. Genome 
Res 21: 790-797

32. Nguyen P., Ma J., Pei D., Obert C., Cheng C., 
et al. (2011) Identification of errors introduced 
during high throughput sequencing of the T 
cell receptor repertoire. BMC Genomics 12: 
106

33. Bolotin D. A., Mamedov I. Z., Britanova O. 
V., Zvyagin I. V., Shagin D., et al. (2012) Next 
generation sequencing for TCR repertoire pro-
filing: platform-specific features and correction 
algorithms. Eur J Immunol 42: 3073-3083

34. Bolotin D. A., Mamedov I. Z., Britanova O. 
V., Zvyagin I. V., Shagin D., et al. (2012) Next 
generation sequencing for TCR repertoire pro-
filing: platform-specific features and correction 
algorithms. Eur J Immunol 42: 3073-3083

35. Bolotin D. A., Mamedov I. Z., Britanova O. 
V., Zvyagin I. V., Shagin D., et al. (2012) Next 
generation sequencing for TCR repertoire pro-
filing: platform-specific features and correction 
algorithms. Eur J Immunol 42: 3073-3083
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Single-Cell Repertoire Sequencing

Analysis of the immunoglobulin variable region and T-cell receptor repertoires is of 

fundamental importance for our understanding of adaptive immunity in health and 

disease.36 However, the vast majority of repertoire studies yield data on only one of 

the two chains of immune receptors and thus cannot provide information about the 

identity of native receptor pairs encoded by single B or T-cell lymphocytes.37,38

Phage and yeast display technologies,39-41 although efficient for isolation of antigen-

specific antibodies, rely on random pairing and do not provide information on the 

native pairs of chains. Methods which involve growing cultures of lymphocyte 

clones,42 or sorting of narrow antigen-specific populations of T cells43 or B cells44 are 

limited by the number of clones that can be identified, as well as by the complexity of 

biological samples. 

New approaches to this problem take advantage of the sensitivity of next-generation 

sequencing to sequence single cells and identify multiple native TCR chain pairs in a 

single experiment.45

36. Miles J. J., Douek D. C. and Price D. A. 
(2011) Bias in the alphabeta T-cell repertoire: 
implications for disease pathogenesis and 
vaccination. Immunol Cell Biol 89: 375-387

37. Wu X., Zhou T., Zhu J., Zhang B., Georgiev I., 
et al. (2011) Focused evolution of HIV-1 neu-
tralizing antibodies revealed by structures and 
deep sequencing. Science 333: 1593-1602

38. Fischer N. (2011) Sequencing antibody reper-
toires: the next generation. MAbs 3: 17-20

39. Bowley D. R., Jones T. M., Burton D. R. and 
Lerner R. A. (2009) Libraries against libraries 
for combinatorial selection of replicating 
antigen-antibody pairs. Proc Natl Acad Sci U S 
A 106: 1380-1385

40. Marks J. D., Hoogenboom H. R., Bonnert T. 
P., McCafferty J., Griffiths A. D., et al. (1991) 
By-passing immunization. Human antibodies 
from V-gene libraries displayed on phage. J 
Mol Biol 222: 581-597

41. Hoogenboom H. R., Griffiths A. D., Johnson 
K. S., Chiswell D. J., Hudson P., et al. (1991) 
Multi-subunit proteins on the surface of fila-
mentous phage: methodologies for displaying 
antibody (Fab) heavy and light chains. Nucleic 
Acids Res 19: 4133-4137

42. Lagerkvist A. C., Furebring C. and Borrebae-
ck C. A. (1995) Single, antigen-specific B 
cells used to generate Fab fragments using 
CD40-mediated amplification or direct PCR 
cloning. Biotechniques 18: 862-869

43. Trautmann L., Rimbert M., Echasserieau K., 
Saulquin X., Neveu B., et al. (2005) Selection 
of T cell clones expressing high-affinity public 
TCRs within Human cytomegalovirus-spe-
cific CD8 T cell responses. J Immunol 175: 
6123-6132

44. Franz B., May K. F., Jr., Dranoff G. and 
Wucherpfennig K. (2011) Ex vivo characteriza-
tion and isolation of rare memory B cells with 
antigen tetramers. Blood 118: 348-357

45. Turchaninova M. A., Britanova O. V., Bolotin D. 
A., Shugay M., Putintseva E. V., et al. (2013) 
Pairing of T-cell receptor chains via emulsion 
PCR. Eur J Immunol 43: 2507-2515
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Illumina Technology: MiSeq 2 x 250 bp
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concomitant activation of CD4+ and CD8+ alphabeta T cells and gammadelta T cells in celiac disease. 
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variable heavy-light antibody chains.
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Cell-based emulsion RT-PCR technique for identifying TCR alpha–beta chain pairing. Released TCR alpha and beta mRNAs are reverse-transcribed, amplified, and 
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46. Turchaninova M. A., Britanova O. V., Bolotin D. 
A., Shugay M., Putintseva E. V., et al. (2013) 
Pairing of T-cell receptor chains via emulsion 
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LYMPHOCYTE DEVELOPMENT

T Cell Development

Multipotent or lymphoid-biased precursors enter the T cell developmental pathway 

in response to signals from the thymic microenvironment.47 Studies have shown 

that Notch, which has been classically associated with embryonic cell development, 

is an important trigger in T-cell lineage commitment. Notch signaling in the thymus 

causes hematopoietic precursors to commit to the T cell fate, mobilizes a T-cell 

gene expression program that prepares the cells for T-cell antigen receptor (TCR), 

TCR-based repertoire selection, and ultimately, prepares them for functional roles as 

immune effectors.48

Many questions remain regarding the molecular mechanisms of this commitment. 

For example, precursors entering the thymus display regulatory genes that are 

either expressed or inducible, however upon commitment these genes are not only 

repressed but also irreversibly silenced.49

Other questions relate to multiple regulatory requirements for successful deployment 

of the T-cell program. For example, there is a need to elucidate the functional role of 

additional transcription factors, including E2A, and HEB, TCF-1 and LEF-1, GATA-3, 

Myb, Runx1, Ikaros, and Gfi1.50 
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B Cell Development 

When mature B cells encounter an antigen they undergo a programmed DNA 
recombination event known as class switch recombination (CSR), which alters the 
effector function of the antibody molecule. During class switching, one constant 
region gene (typically Cμ) is replaced with another (either Cγ3, Cγ1, Cγ2b, Cγ2a, Cε, 
or Cα) via the introduction of double strand breaks (DSBs) and subsequent deletion 
of intervening sequences.51-53

In B lymphocytes, V(D)J recombination, class switch recombination (CSR) and 
somatic hypermutation (SHM) produce obligate single and double-strand DNA 
break intermediates that can become substrates for translocations.54,55 These 
rearrangements could trigger cancer development.56 This is supported by the 
observation that genetic ablation of the enzymes that create DNA lesions during V(D)
J recombination (RAGs) or CSR and SHM (AID) has a significant protective effect on 
B-cell transformation.50,57

Nuclear architecture is another potential contributor to the incidence of chromosomal 
translocations.59 Spatial organization of the genome is compartmentalized into 
chromosome territories as well as transcriptionally active and silent sub nuclear 
environments.60-63 These compartments are believed to impact the frequency with 
which genes from different chromosomes interact and recombine.64
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Translocation-capture sequencing (TC-Seq) is a method developed to study chromosomal rearrangements and translocations. In this method, cells are infected 
with retrovirus expressing l-Scel sites in cells with and without activation-induced cytidine deaminase (AICDA or AID) protein. Genomic DNA from cells is sonicated, 
linker-ligated, purified, and amplified via semi-nested LM-PCR. The linker is then cleaved and the DNA is sequenced. Any AID-dependent chromosomal rearrangement 
will be amplified by LM-PCR, while AID-independent translocations will be discarded.
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Notes on experimental design
4C-seq is the preferred chromosomal conformation capture technique when analyzing 
the DNA contact profile of individual genomic sites. This assay has been particularly 
useful for investigating the associations of specific genes with long-range regulatory 
elements.65,66 (See Chromatin Structure and Rearrangement for more details).

4C is currently limited to the assessment of long-range contacts with larger regions 
elsewhere on the chromosome (in cis) or on other chromosomes (in trans). For 
example, local interactions (<50 kb distance) between a gene and its enhancer are 
not readily detected. Most 4C strategies use restriction enzymes with a 6-nucleotide 
recognition sequence, which cut once every few kilobases. This creates fragments 
that are much larger than the average regulatory sequences, which are no larger than 
several hundred bps. Increased resolution may depend on the use of more selective 
restriction enzymes that can generate shorter fragments, which can enable detection 
of de novo local regulatory interactions. 

4-C 
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Circular chromatin conformation capture (4-C)67, allows the unbiased detection of all genomic regions that interact with a particular region of interest.68 In this 
method, DNA-protein complexes are crosslinked using formaldehyde. The sample is fragmented, and the DNA is ligated and digested. The resulting DNA fragments 
self-circularize, followed by reverse PCR and sequencing. Deep sequencing provides base-pair resolution of ligated fragments.
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INNATE IMMUNITY

Innate immunity is the frontline of host defense. It prompts the rapid and local 

response against pathogens and is also important for the symbiotic partnership 

between the host and its microbiota. The innate immune system and adaptive 

immunity comprise the binary-classification of the immune response. Historically the 

distinction between these two branches of immunity relied on the consensus that 

innate immunity is nonspecific and lacks memory whereas the adaptive immunity is 

characterized by specific antigen recognition and subsequent memory response. 

However, new evidence that demonstrates innate immune features of B cells and 

T cells and adaptive immune properties of natural killer (NK) cells are now blurring this 

conventional binary-classification.69

Innate immunity involves the coordinated action of families of receptors, known 

as pattern-recognition receptors (PRRs) or microbial sensors that respond to 

a wide range of microorganisms through the detection of specific conserved 

microbial patterns or molecules.70-73 This innate immune response is activated by 

specialized sets of receptors found on macrophages, mast cells, dendritic cells, 

natural killer cells, and polymorphonuclear leukocytes. These receptors include the 

membrane-bound Toll-like receptors (TLRs) and C-type lectin receptors (CLRs), 

and the cytosolic RIG-I-like receptors (RLRs), NOD-like receptors (NLRs) and other 

DNA sensors.74-78 Furthermore, complement recognition molecules are circulating 

proteins that constitute the humoral (free in serum and body fluids) arm of innate 

immunity.79 Following ligand binding, receptors induce the activation of distinct 

signaling pathways that involve effector molecules, such as interferons (IFNs) or 

antimicrobial peptides (AMPs), which are required for the eradication of pathogens or 

danger signals.
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CANCER AND THE IMMUNE RESPONSE

The development from a normal hematopoietic cell to a cancerous cell involves a 

multistep process of clonal evolution driven by a series of somatic mutations. These 

mutations progressively transform the cell from normal growth to a precancerous 

state and finally a cancerous state, where all checkpoints designed to regulate cell 

growth have been surmounted. 

Induction of malignant transformations appears to involve at least two distinct 

phases: initiation and promotion. Initiation involves changes in the genome but does 

not, in itself, lead to malignant transformation. Malignant transformation requires a 

secondary step, termed promotion. Promotion can occur during the aggressive cell 

division that follows the initiation phase, and results from the accumulation of new 

DNA alterations, typically affecting proto-oncogenes, tumor-suppressor genes or 

apoptotic genes, that result in unregulated cellular growth. 

The ability of next-generation sequencing to detect mutations in rare clonal types, 

or cells, through deep sequencing makes it possible to study the role of immune 

effector functions in the pathogenesis of hematological malignancies. A notable 

example has been the influx of reports that implicate autoreactive T-cell clones in 

the pathogenesis of clonal stem cell disorders such as myelodysplastic syndromes 

(MDS) and aplastic anemia (AA).80 These studies have been supported by the 

widely consolidated understanding that impairment of anti-tumor immunity, which is 

physiologically mediated by T-cells, can predispose the development of hematological 

malignancies. Collectively these T-cell repertoire studies and new reports that 

implicate immunoglobulin heavy chain rearrangements in clonal evolution of acute 

lymphoblastic leukemia have quickly become one of the most exciting research areas 

in hematology.81-83
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MICROBIOTA AND THE IMMUNE SYSTEM

Microbiota refers to the extraordinarily large and diverse reservoir of microorganisms 

that has a co-evolved relationship with the mammalian immune system. These 

complex microbial communities inhabit the body surfaces of virtually all vertebrates. 

The immune system plays an essential role in maintaining homeostasis with resident 

microbial communities to ensure that the mutualistic nature of the host-microbial 

relationships is sustained. The co-evolution of the vertebrate immune system has 

therefore been driven by the need to protect the host from pathogens and to foster 

complex microbial communities for their protective and metabolic benefits. Given that 

alterations in host-microbiota homeostasis have been implicated in viral infections,84,85 

autoimmune diseases,86 cancer, metabolic diseases, and cardiovascular diseases, 

this is an exciting opportunity for researchers to examine the interactions between the 

microbiota and the host-immune response. 

Next generation sequencing technologies have enabled researchers to define the 

construction of these microbiota by operationally defining polymorphisms of bacterial 

genes; especially those encoding the 16S ribosomal RNA sequences. Sequencing the 

human microbiome is now enabling researchers to examine the interactions between 

microbial communities and host immunity. This has illuminated the significant role that 

the immune system plays in mediating this homeostatic relationship.

The human intestine harbors over 100 trillion microbes, which represent approximately 500 different 
species of bacteria.
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The host and microbiota have co-evolved mutually beneficial outcomes and the immune system plays a 
critical role in preserving homeostasis. The host provides a nutrient-rich environment and protected niches 
for the microbiota. The microbiota provides the host with vitamins and nutrients as by-products of microbial 
digestion and protects the host from pathogens. The microbiota enhances the innate and adaptive immune 
response. Conversely, there is a need for the host to promote a tolerant immune response that enables the 
microbiota to inhabit the niches of the gut.

This network illustrates the various roles of the gut microbiota in extra-intestinal autoimmune diseases.87 
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MAJOR HISTOCOMPATIBILITY 
COMPLEX

Although both T and B cells use surface receptors to recognize antigens, they 

accomplish this in two different ways. In contrast to antibodies or B-cell receptors, 

which can directly recognize antigens, T-cell receptors only recognize antigens that 

are presented on the surface of antigen presenting cells, such as dendritic cells and 

macrophages. These antigen peptides reside within the groove of a cell surface 

protein called the major histocompatibility complex (MHC) molecule. 

In humans, the MHC locus is referred to as the Human Leukocyte Antigen (HLA) 

and encodes a collection of genes that span a contiguous 4 Mb region on the short 

arm of chromosome 6.88 Moreover, the extended MHC, termed (xMHC), spans 

an even larger 7.6 Mb region comprising more than 400 annotated genes and 

pseudogenes.89
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This is a map of the human MHC loci. The MHC class I genes are colored red, MHC class II genes are 
colored blue, and genes in MHC III are colored green. The 6 loci that are outlined encode the peptide binding 
sites of class I and II MHC molecules. These loci are routinely assessed in matching donors and recipients in 
hematopoietic cell and solid organ transplantation. 
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Six of the HLA genes (HLA-A, -B, -C, -DQA1, -DQB1 and –DRB1) are extremely 

polymorphic and constitute a set of important markers that are routinely employed 

in matching patients and donors for solid organ transplantation90 and hematopoietic 

stem cell transplantation.91,92 HLA genes also play an important role in infectious 

diseases (HIV, Hep C and CMV), autoimmune diseases (diabetes, rheumatoid 

arthritis, and celiac disease), and drug hypersensitivity.93

With conventional technologies, only the most polymorphic regions of HLA class I 

(exons 2 and 3) and II (exon 2), which encode the peptide binding sites, are assessed 

in clinical settings. Next-generation sequencing provides clinical researchers with the 

capability to sequence the entire gene, resulting in phase-resolved, unambiguous 

HLA typing. Clinical studies have shown that matching these regions of the 6 major 

HLA loci provides the best clinical outcomes with decreased incidence of rejection 

and graft versus host disease (GVHD) in solid organ and hematopoietic stem cell 

transplantation. However, even when these regions are matched, approximately 30% 

of recipients experience adverse events within 5 years.94 

The source of these imperfect matches is unknown, but there are several possibilities. 

Adverse events may reflect mismatches in regions that lie outside of the regions 

that are currently analyzed. Given the high degree of polymorphisms, ambiguous 

combination of alleles may arise during HLA typing. These may result from cis/trans 

ambiguities or due to a particular allele combination being identical over the regions 

commonly analyzed. For example, in conventional sequencing both heterozygous 

alleles are coamplified and sequenced. Combination ambiguity can occur when two 

or more alleles share identical sequences in the targeted exons but exhibit differences 

in non-sequenced exons.95 Next-generation sequencing provides phase information, 

which may significantly improve the analysis of the HLA cohort (See Phase-Defined 

HLA Sequencing for more details). 
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Phase-Defined HLA Sequencing

Phase-defined sequencing indicates which of the two parental chromosomes 

a particular allele is derived from. Paired-end sequencing inherently provides 

information for phasing. When a read encompasses two or more heterozygous 

genotypes of an individual, the phase of the heterozygous genotypes is determined 

since each fragment from which a read or pair of reads is obtained in a single allele. 

Therefore, if read lengths have sufficiently high coverage a substantial amount of 

phase information can be obtained.96 This has vast implications in understanding the 

interplay of genetic variation and disease,97 imputing untyped genetic variation,98-100 

calling genotypes in sequence data,101-104 detecting genotype error,105 inferring human 

demographic history,106 inferring points of recombination,107 detecting recurrent 

mutation,107 signatures of selection,108 and modeling cis-regulation of 

gene expression. 
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Combination ambiguity occurs when a non-phased consensus sequence is generated. When a single 
consensus sequence is generated this conceals which of the parental chromosome variants are derived from. 
Phasing analysis enables researchers to generate two identifiable sequences that correspond to both parental 
chromosomes. This resolves combination ambiguity and enables researchers to identify which of the two 
parental chromosomes variants are derived from.
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Although there has been a strong emergence of next generation sequencing efforts 

in HLA-genotyping, these comprehensive analyses omit non-coding HLA regions 

and mRNA-spliced data,109-111 which may have an impact on gene regulation.112,113 

Moreover, allele determination is conventionally based on sequence alignment to the 

reference library of HLA sequences in the IMGT/HLA database,114 which prevents the 

identification of novel phase-defined HLA gene haplotypes.

Reviews
Browning S. R. and Browning B. L. (2011) Haplotype phasing: existing methods and new developments. Nat 
Rev Genet 12: 703-714

Tewhey R., Bansal V., Torkamani A., Topol E. J. and Schork N. J. (2011) The importance of phase information 
for human genomics. Nat Rev Genet 12: 215-223

References
Hosomichi K., Jinam T. A., Mitsunaga S., Nakaoka H. and Inoue I. (2013) Phase-defined complete 
sequencing of the HLA genes by next-generation sequencing. BMC Genomics 14: 355
This is the first study to report a complete sequence of the HLA region. Here the authors were able to 
determine the phase-defined entire HLA gene sequences, regardless of whether the alleles were rare or novel. 
They sequenced long-range PCR products of HLA genes spanning from promoter to 3’-UTRs and employed 
a gene-tagging method to generate two HLA gene haplotype sequences based on phase-defined SNVs. 
Paired end reads of 2 x 250 bps allowed them to demonstrate phase-defined allele determination for 33 HLA 
homozygous samples, 11 HLA heterozygous samples, and 3 parent-child families.

Illumina Technology: MiSeq 2 x 250 bp and Nextera DNA Sample Prep Kit for library construction

109. Elsner H. A., Bernard G., Eiz-Vesper B., de 
Matteis M., Bernard A., et al. (2002) Non-ex-
pression of HLA-A*2901102 N is caused by a 
nucleotide exchange in the mRNA splicing site 
at the beginning of intron 4. Tissue Antigens 
59: 139-141 

110. Tamouza R., El Kassar N., Schaeffer V., 
Carbonnelle E., Tatari Z., et al. (2000) A novel 
HLA-B*39 allele (HLA-B*3916) due to a rare 
mutation causing cryptic splice site activation. 
Hum Immunol 61: 467-473

111. Dubois V., Tiercy J. M., Labonne M. P., 
Dormoy A. and Gebuhrer L. (2004) A new 
HLA-B44 allele (B*44020102S) with a splicing 
mutation leading to a complete deletion of 
exon 5. Tissue Antigens 63: 173-180

112. Cocco E., Meloni A., Murru M. R., Coron-
giu D., Tranquilli S., et al. (2012) Vitamin D 
responsive elements within the HLA-DRB1 
promoter region in Sardinian multiple sclerosis 
associated alleles. PLoS One 7: e41678

113. Thomas R., Apps R., Qi Y., Gao X., Male V., et 
al. (2009) HLA-C cell surface expression and 
control of HIV/AIDS correlate with a variant 
upstream of HLA-C. Nat Genet 41: 1290-1294

114. Hosomichi K., Jinam T. A., Mitsunaga S., 
Nakaoka H. and Inoue I. (2013) Phase-defined 
complete sequencing of the HLA genes by 
next-generation sequencing. BMC Genomics 
14: 355



29 An Overview of Publications Featuring Illumina® Technology

SELF VS NON-SELF 
ANTIGEN DISCRIMINATION 

Tolerance

Tolerance refers to the many layers of protection imposed by the immune system 

to prevent the reaction of its cells and antibodies against host components. 

An important form of tolerance is self-tolerance, which refers to the lack of response 

of the immune system to self-antigens. 

Recent studies report a more active role of immune cells in the selective inhibition 

of responses to self-antigens. For example the study of regulatory T cells (TREG), 

which in fact recognize self-proteins, have revolutionized the field of tolerance and 

autoimmunity, not to mention transplantation.
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Linked suppression represents a way in which regulatory T cells (TREG) support local self-tolerance. 
TREG cells inhibit antigen-presenting cells (APCs) presenting their cognate antigen. They can also inhibit 
bystander T cells, of the same and different antigen specificity, through soluble inhibitory factors. 
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Central tolerance occurs in the primary lymphoid organs: the bone marrow for 

B cells and the thymus for T cells. In the first step of this process, T or B-cell clones 

that recognize self-antigens with high affinity are not allowed to mature. Peripheral 

tolerance is a secondary precaution in the event that some self-reactive lymphocytes 

do find their way into the periphery and secondary lymphoid tissues. The peripheral 

tolerance will render some self-reactive lymphocytes in secondary lymphoid tissues 

inactive and generates others that actively inhibit immune responses against self. 

Furthermore, induced cell death, or apoptosis adds a further protective measure by 

limiting the lifespan of activated lymphocytes. 

T cell anergy has been characterized as a hyporesponsive state, or unresponsiveness 

to an antigenic stimulus, induced by TCR engagement in the absence of 

costimulation.115,116 Conversely, when the same antigen is presented with appropriate 

costimulatory molecules it can become a potent immunogen and mount an 

immunologic response. Indirect evidence suggests that T cell dysfunction in the 

tumor microenvironment and establishment of transplant tolerance is partially 

attributed to T cell anergy.117 Despite the advances in the characterization of T cell 

anergy, there are gaps in our knowledge base of the anergic phenotype. This is 

due to the lack of surface markers that might be useful in identifying anergic T cells. 

Furthermore, it is unclear teleologically why T cells that are subjected to anergy-

inducing conditions are not deleted from the repertoire, in order to eliminate T cells of 

undesired specificities.
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Autoimmunity

Autoimmunity is caused from the failure of tolerance to protect the host from 

autoreactive T or B-cell clones. The pathogenesis of these diseases manifests itself 

in the destruction of proteins, cells, and organs by self-reactive lymphocytes. The 

onset and pathogenesis of autoimmunity not only depends on intrinsic factors of 

T and B-cells, such as germline or somatic mutations118-120 but also on environmental 

factors such as microbiota or infections,121 the cytokine milieu, and the presence of 

other immune cells in the microenvironment.122 

For most chronic autoimmune and inflammatory diseases, patient populations are 

heterogeneous and do not uniformly respond to a given therapy. As a result the 

therapeutic decisions for most autoimmune and inflammatory diseases are based 

mainly on trial-and-error observations. The development of “actionable biomarkers” 

may potentially improve the design of clinical trials and inform treatment decisions.123 

For example high-throughput DNA sequencing facilitates the tacking of disease-

associated clones of T and B-cells in autoimmune diseases. Furthermore, changes in 

these cell populations can be correlated with a patient’s response to therapies.124 

The greatest hope in treating these diseases lie in a greater understanding of the 

functional roles of genetic and epigenetic variants in autoimmune pathogenesis.125 

Next-generation sequencing of whole-exomes and whole-genomes has become 

an essential tool in identifying rare genetic variants in large cohorts of autoimmune 

disease patients. In addition, recent advances in the sequencing of epigenetic 

markers are adding more information to elucidate the subtle interplay among 

epigenetic modifications, genetic factors, and environmental signals that predispose 

individuals to autoimmune risk.  
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naïve CD4+ T cells from lupus patients, they revealed that 21 out of 35 hypo methylated genes are regulated 
by type-1 interferon - including IFIT1, IFIT3, MX1, STAT1, IFI44L, USP18, TRIM22 and BST2. These results 
indicate that abnormal DNA methylation exists in lupus T cells prior to activation and differentiation and 
provide an epigenetic explanation for hyper-responsiveness to type-1 interferon in lupus T cells. 
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responses. Gluten exposure also induces the appearance of activated, gut-homing CD8+ αβ and γδ T cells 
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Roychoudhuri R., Hirahara K., Mousavi K., Clever D., Klebanoff C. A., et al. (2013) BACH2 represses 
effector programs to stabilize T(reg)-mediated immune homeostasis. Nature 498: 506-510
BACH2 is expressed in B cells where it acts as a transcriptional repressor of Blimp-1 and other class switch 
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the combination of genome-wide significance thresholding and suggestively associated variants provided 
evidence of direct and indirect protein-protein interaction and enrichment of genes involved in immune 
signaling processes including: TNFAIP3, PTTG1, PRDM1, DGKQ, FCGR2A, IRAK1BP1, ITSN2 and PHIP, 
among others.
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Solid Organ Transplantation

Graft rejection in solid organ transplantation is attributed to histoincompatible 

tissues. One type of transplanted tissue is an allograft, which is transferred between 

genetically different members of the same species. Because an allograft is genetically 

dissimilar to the host and therefore expresses unique antigens, these are often not 

recognized as self-antigens by the immune system and result in graft rejection. 

Tissues that share sufficient antigenic similarity, allowing transfer without immunologic 

rejection, are said to be histoincompatible, as is the case when the transfer occurs 

between identical twins. Most transplants are conducted between individuals with a 

matching ABO blood group and HLA matching. However, even when MHC antigens 

are identical, the transplanted tissue can be rejected because of differences at 

various other loci, including the minor histocompatibility locus. 

Currently, for heart transplant recipients, the endomyocardial biopsy (EMB) has 

been employed as the ‘gold standard’ for rejection surveillance. However, the 

endomyocardial biopsy is an expensive and invasive procedure that is limited by 

sampling error, interobserver variability in grading, late detection of rejection, and 

risk of morbidity.126,127 Therefore, there has been a considerable effort to develop 

noninvasive techniques that might replace or reduce the need for EMB, with 

much focus placed on monitoring the recipient’s immune response to detect the 

onset of rejection. 

126. Winters G. L. and McManus B. M. (1996) Con-
sistencies and controversies in the application 
of the International Society for Heart and Lung 
Transplantation working formulation for heart 
transplant biopsy specimens. Rapamycin 
Cardiac Rejection Treatment Trial Pathologists. 
J Heart Lung Transplant 15: 728-735

127. Oto T., Levvey B. J. and Snell G. I. (2007) Po-
tential refinements of the International Society 
for Heart and Lung Transplantation primary 
graft dysfunction grading system. J Heart Lung 
Transplant 26: 431-436



35 An Overview of Publications Featuring Illumina® Technology

Reviews
Gabriel C., Furst D., Fae I., Wenda S., Zollikofer C., et al. (2014) HLA typing by next-generation sequencing - 
getting closer to reality. Tissue Antigens 83: 65-75

Boyd S. D. (2013) Diagnostic applications of high-throughput DNA sequencing. Annu Rev Pathol 8: 381-410

De Santis D., Dinauer D., Duke J., Erlich H. A., Holcomb C. L., et al. (2013) 16(th) IHIW : review of HLA typing 
by NGS. Int J Immunogenet 40: 72-76

Starzl R., Brandacher G., Lee W. P., Carbonell J., Zhang W., et al. (2013) Review of the early diagnoses and 
assessment of rejection in vascularized composite allotransplantation. Clin Dev Immunol 2013: 402980

References
Chen Y., Zhang H., Xiao X., Jia Y., Wu W., et al. (2013) Peripheral blood transcriptome sequencing 
reveals rejection-relevant genes in long-term heart transplantation. Int J Cardiol 168: 2726-2733
The authors employed transcriptome sequencing of peripheral blood mononuclear cells (PBMCs) derived 
from 6 quiescent and 6 severe rejection heart transplant recipients. Through digital gene expression (DGE) 
profiling, a measurement of expression based on the number of reads of the same or similar sequences, they 
identified a 10-gene PBMC signature capable of distinguishing patients with acute cardiac allograft rejection. 
Based on a protein-protein interaction network analysis, the authors indicate that CXCR4 and HLA-A are the 
most informative genes based on a higher degree of control over information flowing to the other 10 genes in 
the cooperative networkt.
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Hosomichi K., Jinam T. A., Mitsunaga S., Nakaoka H. and Inoue I. (2013) Phase-defined complete 
sequencing of the HLA genes by next-generation sequencing. BMC Genomics 14: 355
The human leukocyte antigen (HLA) region, the 3.8-Mb segment of the human genome at 6p21, has been 
associated with more than 100 different diseases, mostly autoimmune diseases. Due to the complex nature of 
HLA genes, there are difficulties in elucidating complete HLA gene sequences especially HLA gene haplotype 
structures by the conventional sequencing method. This study presents a new method for… read more cost-
effective phase-defined complete sequencing of HLA genes using indexed multiplexed samples on Illumina 
MiSeq. The method was demonstrated on 53 samples showing high resolution for HLA typing.
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Snyder T. M., Khush K. K., Valantine H. A. and Quake S. R. (2011) Universal noninvasive detection 
of solid organ transplant rejection. Proceedings of the National Academy of Sciences of the United 
States of America 108: 6229-6234
Due to increased cell death in the organ during graft rejection, increased donor molecules are expected to 
be present in the blood at these times. Here the authors genotyped the donor and recipient to establish a 
unique donor “genetic fingerprint,” which was subsequently detected by high-throughput sequencing of the 
cell-free DNA in peripheral blood of heart transplant recipients. Reads with donor and recipient SNP calls 
were identified to determine a % Donor DNA. This study establishes a mean value below 1% as indicative of a 
healthy normal level of donor-derived cell-free DNA. In contrast, during organ rejection the level of donor DNA 
signal rises to a mean value ranging from 3-4% of the total cell-free DNA.
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INFECTIOUS DISEASES AND VACCINES

New technological advances in T cell isolation and T receptor sequencing have 

enabled greater understanding of the basic structure of immune T cell repertoires, 

the diversity of responses within and between individuals, and temporal changes in 

repertoires and in response to infectious conditions.
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against bacterial infections. Curr Opin Microbiol 16: 23-31

Viral Infections

Viral infections such as HIV, a retrovirus, are able to perturb and alter gene 

expression through several mechanisms. Studies have profiled the expression 

of cellular miRNA and some sncRNA post HIV infection using next generation 

sequencing.128-130 Emerging studies have focused on the novel mechanisms of gene 

expression regulation, central to recently discovered players between HIV and the 

immune system. For example, the human leukocyte antigen (HLA) family of proteins 

plays a key role in retroviral progression because it is a crucial modulator of the 

immune response. 

Ultimately, understanding how immune cells, such as naïve virus-specific CD8 T cells, 

influence the type of immune response generated after virus infections is critical to 

the development of enhanced therapeutic and vaccination strategies to exploit CD8+ 

T cell-mediated immunity.
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In this paper the authors investigated the impact of HIV-1 infection on the intestinal microbiome and its 
association with mucosal T-cell and dendritic c ell (DC) frequency and activation, as well as with levels of 
systemic T-cell activation, inflammation, and microbial translocation. They found that HIV-1-related change 
in the microbiome that was associated with increased mucosal cellular immune activation, microbial 
translocation, and blood T-cell activation.
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expression in chronic hepatitis C virus infection is IFNL3 genotype-dependent. Genes Immun 15: 88-94
The IFNL3 genotype predicts the clearance of hepatitis C virus (HCV), spontaneously and with interferon 
(IFN)-based therapy. The authors identified an association between a cluster of ISGs, the metallothioneins 
(MTs) and IFNL3 genotype. They found that metallothioneins (MTs) were significantly upregulated (in contrast 
to most other ISGs) in HCV-infected liver biopsies of IFNL3 genotype rs8099917 responders.
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oncogenic human papillomavirus infections. Proc Natl Acad Sci U S A 111: 4262-4267
The authors studied miRNA expression in 158 cervical specimens, including 38 normal, 52 cervical 
intraepithelial neoplasia (CIN), and 68 cervical cancer (CC) tissues. They found an increase of miR-25, miR-
92a, and miR-378 expression with lesion progression but no obvious change of miR-22, miR-29a, and miR-
100 among the HPV-infected tissues. An expression ratio ≥1.5 of miR-25/92a group over miR-22/29a group 
could serve as a cutoff value to distinguish normal cervix from CIN and from CIN to CC.
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Vaccine Development

The new generation of sequencing technology holds tremendous promise in 

the areas of systems biology131and vaccinomics132-136 for developing a deeper 

understanding of the host response to both vaccines and viral infections.

Studies, which report differential gene expression patterns between high and 

low responders to vaccines, provide insight into the divergent immunoregulatory 

processes between high and low responders. Further investigation of these loci may 

lead to important findings regarding the genetic control of immune responses, which 

can inform the engineering of new vaccine candidates.132,136

Human monoclonal antibodies have a high potential to serve as potential therapeutic 

tools. Until recently, single antibodies capable of neutralizing a broad array of 

evolving viruses, such as influenza or HIV, were considered extremely rare and nearly 

impossible to isolate. By employing high-throughput technologies, careful screening 

processes and clever selection of infected donors, researchers are now able to 

isolate and characterize these broadly neutralizing antibodies.137,138 There is now a 

strong effort to preferentially target the epitopes of these antibodies.
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TECHNIQUES

miRNA and noncoding RNAs

Only a small fraction of the transcriptome is translated, leaving most of the 

transcriptional output as ncRNAs, which is classified into two broad categories: 

small and long RNAs. MicroRNA (miRNAs) is a sub-class of the small noncoding 

RNA (ncRNA) family, which are small endogenously expressed molecules that 

regulate the expression of proteins encoded by their mRNA targets. miRNAs have 

been associated with central roles in growth, development, and immune response 

in vivo.139-141 They primarily target gene expression at the post-transcriptional,142,143 

level by adjoining to the RNA-induced silencing complex (RISC), which targets 

the 3’-untranslated region (3’-UTR) of complementary mRNAs and results in the 

transcript’s repression or degradation.144,145

Recent studies have shown that miRNAs have unique expression profiles in cells 

of the innate and adaptive immune systems, CNS, and cancers.146-149 Furthermore, 

new evidence implicates a central role of miRNAs in altering mRNA expression in 

HIV-target cells in response to viral replication.150 Improvements in high-throughput 

sequencing technologies, with respect to depth and sensitivity, are enabling 

researchers to profile known and novel miRNAs, and identify their exact sequence 

and length, which provides insights on RNA editing processes and mutational 

events.151 This allows researchers to decode the networks of non-coding RNA 

control in the development of the adaptive and innate immune systems and their 

functional response. 
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Chromatin isolation by RNA purification (ChIRP-Seq) is a protocol to detect the locations on the genome where non-coding RNAs (ncRNAs), such as long non-
coding RNAs (lncRNAs), and their proteins are bound.152 In this method, samples are first crosslinked and sonicated. Biotinylated tiling oligos are hybridized to the 
RNAs of interest, and the complexes are captured with streptavidin magnetic beads. After treatment with RNase H the DNA is extracted and sequenced. With deep 
sequencing the lncRNA/protein interaction site can be determined at single-base resolution.153 
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ChIP-Seq 

Many transcription factors and chromatin modifiers linked to innate and adaptive 

immunity.154-157 The identification and characterization of the genome-wide 

locations of transcription factors and chromatin-modifying enzymes and the 

modification status of histones has been accelerated by the application of chromatin 

immunoprecipitation techniques in next-generation sequencing analysis (ChIP-Seq). 

This method employs antibodies directed against a target protein to isolate a DNA-

protein complex. Purified DNA is obtained from the immunoprecipitated DNA-protein 

complexes and is subsequently ligated with sequencing adaptors, amplified by PCR 

and sequenced on a next-generation sequencing platform.158 Ultimately, the need 

to comprehend global transcriptional regulation of the immune system positions 

ChIP-Seq as a powerful application, which informs our understanding of the dynamic 

processes of stem cell differentiation, formation of immunological memory, disease 

progression, and response to environmental stimuli.158,159
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The ChIP-Seq workflow. Chromatin immunoprecipitation sequencing (ChIP-Seq) is a well-established method to map specific protein-binding sites. In this method, 
DNA-protein complexes are crosslinked in vivo. Samples are then fragmented and treated with an exonuclease to trim unbound oligonucleotides. Protein-specific 
antibodies are used to immunoprecipitate the DNA-protein complex. The DNA is extracted and sequenced, giving high-resolution sequences of the  
protein-binding sites.
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